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The various aspects of the correlated stopping power of pointlike and extended ions moving in a disordered
degenerate electron gas have been analytically and numerically studied. Within the linear response theory we
have made a systematic and comprehensive investigation of correlated stopping power, vicinage function, and
related quantities for protons and extended ions, as well as for their clusters. The disorder, which leads to a
damping of plasmons and quasiparticles in the electron gas, is taken into account through a relaxation time
approximation in the linear response function. The stopping power for an arbitrary extended ion with a single
bound electron is calculated in both the low- and high velocity limitsy. Our analytical results show that in a
high velocity limit the main logarithmic contribution to the stopping power for an extened ion is significantly
modified and for instance, in the case of He+, Li2+, and Be3+ ions must behave as lnsAv5d, lnsAv3.25d, and
lnsAv2.77d, respectively wherev is the ion velocity. This behavior may be contrasted with the usual lnsv2d
dependence for a point ion projectile. It is shown that the factorA which depends on the damping can be
significantly reduced by increasing the latter. In order to highlight the effects of damping we present a
comparison of our analytical and numerical results, in the case of both pointlike and extended ions, obtained
for a nonzero damping with those for a vanishing damping.
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I. INTRODUCTION

The energy loss of a charged particle moving in a degen-
erate electron gas(DEG) is of continuing interest. This is a
topic of direct relevance to a quantitative understanding, for
instance, of beam-target interaction in the contexts of particle
driven fusion[1–3] and the implantation experiments which
include a modification of metal surfaces using ion beams.
The valence electron system in a solid can be regarded, to a
good approximation, as a DEG with a uniform electron den-
sity n0. The energy losses of ions moving in such an electron
gas can be studied through the stopping power(SP) of the
medium. Following the pioneering works of Lindhard, and
Lindhard and Winther[4], a lot of calculations were done
within the framework of the linear response theory(see, e.g.,
Refs.[5–8] for reviews). The main part of these calculations
was based on the linear response function in random-phase
approximation(RPA) which is usually valid in the weak cou-
pling limit of an electron gas, i.e., for the density parameter
rs=s3/4pn0a0

3d1/3,1, wherea0=0.529 Å is the Bohr ra-
dius. Electron energy band effects, electron-electron correla-
tion beyond RPA, and electron-impurity(disorder) collisions
all contribute to the linear response function and hence to the
linear response theory of SP, for real solids. To include all
these aspects at the same level is a formidable task. In this
paper we shall consider a disordered electron gas in RPA and
make a detailed study of effects of disorder on various as-
pects of SP.

In our work the effect of disorder is included in the linear
response function within RPA through a simple, physically

motivated, and number-conserving relaxation-time approxi-
mation (RTA), first considered by Mermin[9] and then by
Das [10]. In this approximation the effect of disorder which
leads to a damping of excitations enters the RPA dielectric
function, for a given electron-impurity collision frequencyg,
through«RPAsk,v+ igd whereg is used as a model param-
eter. In some investigations of ion stopping in carbon and
silicon targets,g was determined by fitting −Imf«−1s0,v ,gdg
to experimental optical energy loss functions[11–13]. This
disorder-inclusive dielectric function, with the collision fre-
quency as a free parameter, allows some physical insight and
useful numerical estimates of the influence of disorder on
energy loss in a DEG. The predicted effect is a shorter life-
time and smaller mean free path of the plasmons resulting in
considerable modifications of the wake field behind the pass-
ing ion [14]. This is of particular importance for vicinity
effects on the energy loss of two-[13] and multi-ion arrange-
ments[15,16]. For the stopping of a single ion, the broaden-
ing of the plasmon peak with increasingg shifts the thresh-
old for the energy loss by plasmon excitation towards lower
projectile velocities. It now becomes possible for low-
velocity projectile ions to excite plasmons(in addition to
single-particle excitations). This increases the SP at low pro-
jectile velocities, compared to the disorder-free RPA result
[12]. Recently a similar study has been performed for a clas-
sical (nondegenerate) target [17], where the parameterg is
treated within the Faber-Ziman semiclassical expression in-
cluding the plasma temperature effects. For a DEG and for a
given electron density, the damping parameter can be as-
sumed to be a constant to a good approximation. The damp-
ing parameter in RTA will be further commented on in Sec.
V.

In an earlier work[18] we made a detailed study of the
respective contributions of collective(plasmon) and single-
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particle excitations to SP in a disorder-free DEG and found a
generalized sum rule for pointlike and extended charged pro-
jectiles and clusters. In a separate work[19] we investigated
the above-mentioned respective contributions to SP for
pointlike and extended projectiles in a disordered DEG
within the linear response formulation, the effects of disorder
being taken included through a number-conserving RTA. The
present work, which is a natural sequel to but goes beyond
[18,19], reports on our investigations of the individual(ISP)
and correlated(CSP) stopping powers of pointlike and ex-
tended ions as well as their clusters in a disordered DEG.
Previously the CSP has been considered for diclusters and
within a simple plasmon-pole approximation[20] and more
recently in the context of an inertial confinement fusion sce-
nario using the full Lindhard(i.e., RPA) dielectric function
and a variety of analytical and numerical methods(see, e.g.,
Refs. [1,3,6,7,15,16,21,22] for reviews). In the studies pre-
sented in this paper we use the full RPA dielectric function
and include damping through a number-conserving RTA for
a DEG medium[9,10]. The plan of the paper is follows. In
Sec. II we briefly outline the linear response formulation for
SP of a dicluster of identical extended ions and use analytical
expressions for the disorder-inclusive dielectric function de-
rived in Ref. [19]. The dicluster SP formulation is then ex-
tended to anN cluster system through a binary superposition.
As in Refs. [18,19,23] we consider proton(as a pointlike
projectile) and an extended ion of arbitrary nuclear chargeZ
but having a single bound electron, as well as proton and
N sNù2d extended ion clusters. As useful examples of ex-
tended projectiles we consider He+, Li2+, and Be3+ ions, and
He+ ion N clusters. In Sec. III we develop some analytical
techniques to calculate the SP of an extended ion in low- and
high-velocity regimes. The two particular cases studied in
this section are(i) low-velocity limit for extended ion SP
moving in a damping-freesg=0d DEG, and(ii ) high-velocity
limit for arbitrary disorder(or g). Section IV contains sys-
tematic numerical calculations for the SP and the vicinage
function. The results are summarized and discussed in Secs.
IV and V.

II. STOPPING POWER: PRELIMINARIES

A. SP of an ion dicluster

Consider an external charge with distributionrextsr ,td
=Qextsr −vtd moving with velocityv in a medium character-
ized by the longitudinal dielectric function«sk,v ,gd. Within
the linear response theory and in the Born approximation the
scalar electric potentialwsr ,td due to this external charge
screened by the medium is given by[4,24]

wsr ,td =
4p

s2pd3E dkGskd
expfik · sr − vtdg

k2«sk,k ·v,gd
, s1d

whereGskd is the Fourier transform of the stationary charge
Qextsr d.

The stopping power which is the energy loss of the exter-
nal charge regarded as a projectile, per unit path length in the
medium regarded as a target material, can be calculated from
the force acting on the charge. The latter is related to the

induced electric fieldEind in the medium. For a three-
dimensional medium we have, for the SP(see, e.g., Refs.
[6–8] and references therein),

S; −E drQextsr − vtd
v

y
Eindsr ,td

=
1

2p2v
E dk uGskdu2

k ·v

k2 Im
− 1

«sk,k ·v,gd
. s2d

Equation(2) is applicable to any external charge distribu-
tion. We shall apply it to a dicluster of two identical ions
with fixed nuclear chargeZeand one bound electron on each
ion, moving in a disordered DEG at a given velocityv. It is
assumed that the pointlike nuclei are separated by a variable
distanceR, andq is the angle between the interionic separa-
tion vector R and the velocity vectorv. For the projectile
system under study we may writeQextsr d as

Qextsr d = Zefdsr d + dsr − Rdg − efrsr d + rsur − Rudg. s3d

For point-ions, only the delta-function terms in Eq.s3d need
be considered while for an extended-charge projectile all the
terms in Eq.s3d are included.rsrd is the spatial distribution,
assumed to be spherically symmetric, of bound electrons in
the ions.

We use a 1s-type wave function of the formc1ssrd
=sZ3/pa0

3d1/2exps−Zr /a0d to describe the bound electron on
each ion, witha0 the Bohr radius. It may be remarked that,
unlike in the work of Wang and Nagy[23], we are consider-
ing an unscreened 1s electron. The Fourier transform of the
spatial distributionrsrd= uc1ssrdu2 is then expressed asrskd
=s1+k2a0

2/4Z2d−2.
For a dicluster of two identical ions we have

uGskdu2 = 2e2fZ − rskdg2f1 + cossk ·Rdg. s4d

From Eqs.s2d and s4d the SP of this two-ion system is then
found to bef19g

Ssl,R,qd = 2Sindsld + 2Scorrsl,R,qd, s5d

where Sindsld and Scorrsl ,R,qd stand for individual and
correlated SP, respectively,

Sindsld =
16Z2S0

p3x4l2E
0

`

Z2sa,zdzdzE
0

l

Im
− 1

«sz,u,Gd
udu, s6d

Scorrsl,R,qd =
16 Z2S0

p3x4l2 E
0

`

Z2sa,zdzdzE
0

l

Im
− 1

«sz,u,Gd
udu

3 cosS2uz

l
j cosqDJ0S2jz sin vÎ1 −

u2

l2D .

s7d

J0+sxd is the Bessel function of first kind and zero order,
S0=e2/2a0

2.2.566 GeV/cm.Here we have introduced the
dimensionless Lindhard variablesz=k/2kF, u=v /kvF,
wherevF and kF are, respectively, the Fermi velocity and
wave number of the target electrons,l=v /vF, j=kFR.
Zsa ,zd=1−Z−1rsa ,zd, where a=px2Z, x2=1/pkFa0
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=s4/9p4d1/3rs, and rsa ,zd is the Fourier transform of the
spatial distribution of bound electron in the ion written in
the Lindhard variablesz and u. With the notations intro-
duced above we have

rsa,zd =
a4

sa2 + z2d2 . s8d

We briefly note that in Eq.s5d the term for correlated stop-
ping powersCSPd Scorr vanishes for largeR sR→`d and SP
is then the sum of individual stopping powerssISPd for the
separate ions. ForR→0 the two ions coalesce into a
single entity. ThenScorr=Sind and SP is that for a total
charge 2eZt=2esZ−1d.

Let us now specify the disorder-inclusive dielectric func-
tion. The target medium is assumed to be disordered due to
impurities, etc., with which the target electrons will undergo
collisions. The effect of disorder on the RPA dielectric func-
tion «RPAsk,vd is included, in a number-conserving approxi-
mation, through a relaxation timet=1/g whereg is the col-
lision frequency [9,10]. For t→` this linear response
function «sk,v ,gd reduces to the usual Lindhard dielectric
function. With the notations introduced in the preceding
paragraph,«sk,v ,gd reads

«sz,u,Gd = 1 +
szu+ iGdf«RPAsz,u,Gd − 1g

zu+ iGf«RPAsz,u,Gd − 1g/f«RPAsz,0d − 1g
,

s9d

where G="g /4EF, EF being the Fermi energy ="2kF
2 /2m

with m as the effective mass. The quantityg sor Gd is a
measure of damping of excitations in the disordered electron
gas.«RPAsz,u,Gd=«RPAsk,v+ igd is the longitudinal dielec-
tric function of a zero-temperaturesdegenerated electron
gas in RPA.«RPAsz,0d=«RPAsk,0d is the static dielectric
function. The explicit analytical expression for
«RPAsz,u,Gd has been derived in Ref.f19g, which we recall
here for completeness:

«RPAsz,u,Gd = «RPAsk,v + igd

= 1 +
x2

z2 ff1sz,u,Gd + i f 2sz,u,Gdg, s10d

where we have introduced the functionsf1sz,u,Gd and
f2sz,u,Gd as in the usual RPA expression of longitudinal
dielectric function,

f1sz,u,Gd =
1

2
+

1

16z3hfz2sU−
2 − 1d − G2gY1sz,U−d

− fz2sU+
2 − 1d − G2gY1sz,U+d

+ 4GzfU+Y2sz,U+d − U−Y2sz,U−dgj, s11d

f2sz,u,Gd =
1

8z3hGzfU − Y1sz,U−d − U+Y1sz,U+dg + fz2sU−
2

− 1d − G2gY2sz,U−d − fz2sU+
2 − 1d − G2gY2sz,U+dj

s12d

with U±=u±z,

Y1sz,Ud = ln
z2sU + 1d2 + G2

z2sU − 1d2 + G2 , s13d

Y2sz,Ud = arctan
zsU − 1d

G
− arctan

zsU + 1d
G

. s14d

In the case of vanishing dampingsg→0 andG→0d the ex-
pressionss9d–s14d coincide with the Lindhard resultf4g.

In many experimental situations, clusters of ions are
formed with random orientations ofR. A correlated stopping
power appropriate to this situation may be obtained by car-
rying out a spherical average overR of Scorr in Eq. (7). We
find

S̄corrsl,Rd

=
16Z2S0

p3x4l2E
0

`

Z2sa,zd j0s2zjdzdzE
0

l

Im
− 1

«sz,u,Gd
udu,

s15d

where j0sxd=sinsxd /x.
One may consider an interference or vicinage function

which is a measure of the difference between the individual-
particle contribution and its correlated counterpart to the
stopping power. This function is defined as[20]

gsl,R,qd =
Scorrsl,R,qd

Sindsld
, s16d

gavsl,Rd =
S̄corrsl,Rd

Sindsld
. s17d

Equations5d can then be put in the form

Ssl,R,qd = 2Sindsldf1 + gsl,R,qdg, s18d

whence

Savsl,Rd = 2Sindsldf1 + gavsl,Rdg. s19d

gsl ,R,qd describes the extent of correlation effects with re-
spect to an uncorrelated scenario. The vicinage function be-
comes equal to unity asR→0 when the two ions coalesce
into an single entity, and goes to zero asR→` when the two
ions are totally uncorrelated.

B. SP of a linearN-ion chain

In many situations, e.g., in the interaction of an ion beam
with a target medium, several ions are stopped simulta-
neously. This naturally raises the question of correlation ef-
fects due to mutual influence of the ions in a given ion con-
figuration. Some interesting candidates for these correlation

ENERGY LOSS OF IONS AND ION CLUSTERS IN A… PHYSICAL REVIEW E 69, 046404(2004)

046404-3



effects are, for instance, the ion clouds created by very fast
fragmentation and ionization(on a femtosecond scale) of
large clusterions when passing through a target. A possible
stopping enhancement for such large clusters is important in
connection with the proposed use of cluster-ion beams for
inertial confinement fusion as mentioned in the Introduction.
As in the case of single ion stopping, the whole slowing
down process of some arrangement of ions involves the SP,
the charge states of the ions, and—as an additional aspect—
the Coulomb explosion of these clouds of ions driven by the
mutual repulsion among the charges. A complete description
of the stopping of these ion clusters requires a simultaneous
treatment of all these including correlation effects on both
the SP and the charge state. In this paper we do not discuss
the charge state evolution of the projectiles under study, but
concentrate on the ion-ion correlation effects with respect to
the SP for a given ion configuration, i.e., for given relative
positions and charges of the ions at some instant in their
slowing down process.

With this proviso and going beyond an extended ion and a
dicluster, we now consider the energy loss of a linear ion
beam projectile modelled by a chain ofN ions each of which
moving with velocityv. In this study we restrict ourselves to
a simple geometry for the chain, which assumes a nearest-
neighbor distanceR having an orientation angleq with re-
spect to the ion velocity vectorv. This ion configuration has
been intensively explored in earlier works(see, e.g., Refs.
[1,15,16,21] and references therein) and can be viewed as a
useful model to describe the overall(averaged) behavior of
ion distributions as produced in the fragmentation process of
cluster ions when impacting a target. Furthermore, it allows
for relatively easy analytical and numerical calculations.

We can apply Eq.(5)–(7) to any selected pair of ions
within a given configuration ofN-ions Considering this con-
figuration to be anN-ion chain the energy loss for the chain
is obtained as a linear superposition of the corresponding
quantity for a dicluster, and is given by

SNsl,R,qd = NSindsld + 2o
n=1

N−1

sN − ndScorrsl,nR,qd

=
16Z2S0

p3x4l2E
0

`

Z2sa,zdzdzE
0

l

Im
− 1

«sz,u,Gd

3YNsz,u,qd udu. s20d

Here YNsz,u,qd is the structure factor of the linearN-ion
chain which depends onN and the orientation angleq. For
such a structure we expect a strong dependence of the SP on
the orientation of the chain with respect to its velocity. For
velocities parallel to the chain, that is forRiv sq=0d, the
correlations between ions are maximalf15,16,21g and the
structure factorYN is then given by

YNsz,ud ; YNsz,u,0d = FsinsNzuj/ld
sinszuj/ld G2

. s21d

In Eq. s20d Sindsld and Scorrsl ,nR,qd stand for individual
and two-ion correlated SP’s and are given by Eqs.s6d and
s7d, respectively. We again briefly note that the correlated

SP for the chain vanishes for largeR sR→`d and the SP is
the sum of individual ion SP’s,SN→NSindsld.For R→0
we haveScorrsl ,R,qd→Sindsld and the SP is then that for
a resulting cluster of charge:SN→N2Sindsld.

III. STOPPING POWER: THEORETICAL CALCULATIONS

The most characteristic features of a charged projectile
are its charge strength and structure, and the velocityy. One
sees from Eqs.(5)–(7) that the stopping power of any ex-
tended projectile with effective chargeZeff=Z−rsa ,zd grows
quadratically withZeff. This is a consequence of the linear
response approach which depends quadratically on the per-
turbationZeff. However, even under these circumstances, for
extended projectiles the dependence of SP on the projectile
chargeZ (or the dependence on the total chargeZt=Z−1) is
more complicated than for pointlike ions, as can be seen
from Eqs. (5)–(7). In this context it may be recalled that
within the linear response theory but for a classical or par-
tially degenerate electron gas medium, the classical Bohr re-
sult with the upper cutoff parameterkmax=my2/ uZue2 (which
depends on the ionic chargeZ) leads to a SP behaving as
Z2lns1/uZud for large velocities(see, e.g., Ref.[6]). In our
case with a fully quantum RPA dielectric functionsT=0d the
high-velocity energy loss is given by the Bethe expression
Z2lns2my2/"vpd where vp is the plasmon frequency. This
logarithmic factor does not depend on the ionic chargeZ.
Besides, as we show below the dependence on the velocity in
the high-velocity limit is more involved than its low-velocity
counterpart. In this section we will derive some analytical
expressions for SP of extended ions in low- and high-
velocity limits with special attention given to the ISP.

A. Low-velocity limit: General formulation

Let us consider SP for slow projectiles. A consequence of
the linear response theory, confirmed by experiments, is that
for ion velocitiesy low compared to the Fermi velocityyF,
the stopping power is proportional toy (see, e.g., the latest
experiment[25]). The coefficient of proportionality may be
called a friction coefficient. Using analytical results obtained
for «RPAsz,u,Gd the general expressions for SP follow from
Eqs.(5)–(14):

Sindsld .
8Z2S0

3p2x2lE
0

` Z2sa,zdJsz,Gdz3dz

fz2 + x2fszdg2

=
8Z2S0

3p2x2lRindsa,G,x2d, s22d

Scorrsl,R,qd .
4Z2S0

p2x2 lE
0

` Z2sa,zdJsz,Gdz3dz

fz2 + x2fszdg2 fF1szjd

+ F2szjdsin2qg, s23d
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S̄corrsl,Rd .
8Z2S0

3p2x2lE
0

`

j0s2zjd
Z2sa,zdJsz,Gdz3dz

fz2 + x2fszdg2 ,

s24d

where the dimensionless friction coefficientRindsa ,G ,x2d
depends on both the target and projectile properties and
hence also on the dimensionless damping parameterG.
We have introduced the following functions:

Jsz,Gd =
2z

pG

fszdffszd − csz,Gdg
csz,Gd

, s25d

F1sjd =
1

j3FSj2 −
1

2
Dsins2jd + j coss2jdG , s26d

F2sjd =
1

j3FS3

4
− j2Dsins2jd −

3

2
j coss2jdG , s27d

csz,Gd =
1

2
+

1

8z3Hfz2sz2 − 1d − G2gln
z2sz− 1d2 + G2

z2sz+ 1d2 + G2

− 4Gz2Sarctan
z2 + z

G
− arctan

z2 − z

G
DJ , s28d

fszd = csz,0d =
1

2
+

1 − z2

4z
lnU1 + z

1 − z
U . s29d

From Eqs.(26) and (27) it follows that F1sjd→2/3 and
F2sjd→0 at j→0. Consequently, as expected,
Scorrsl ,R,qd→Sindsld whenR→0. Since in the low-velocity
limit both ISP and CSP are proportional to the velocity of the
projectile the vicinage functiongsl ,R,qd at l!1 depends
only on the interionic distanceR and orientation angleq.

When the damping vanishessG→0d Eq. (28) becomes

csz,Gd → fszd −
pG

2z
us1 − zd + OsG2d, s30d

where uszd is the Heaviside unit-step function. Therefore
Jsz,Gd→us1−zd whenG→0 and from Eq.s22d we find

Sindsld .
8Z2S0

3p2x2lE
0

1 Z2sa,zdz3dz

fz2 + x2fszdg2 =
8Z2S0

3p2x2lRindsa,x2d.

s31d

For pointlike projectilesfZsz,ad→1g the last expression be-
comes the known resultssee, e.g., Ref.f4gd. These approxi-
mate analytical results are well supported by full numerical
calculations. In Fig. 1 we show the friction coefficient
Rindsa ,G ,x2d for He+ ion sZ=2d vs damping parameterG
for two values of the density parameterrs=2.677 andrs
=2.069corresponding to the valence electron densities in
Cu and Al respectively. The lines with circles are for a
proton projectile. As expected, the friction coefficient and
hence the SP increase with an increasing damping param-
eter G; this was previously reported in Refs.f12–14g.

The approximation(22) implies that the SP is propor-
tional to velocity. The velocity region in which the linear
proportionality between SP and the projectile velocity holds
may be inferred from the numerical calculations(see Sec.
IV ) and the recent experimental results[25] on low-energy
proton and antiproton energy losses. It is seen from those
results that the approximation(22) remains quite accurate
even whenl becomes as large as,1.

B. Low-velocity limit: Extended ions „g=0…

We shall now evaluate the last expression for ISP of ex-
tended ions. To evaluate Eq.(31) we split it into two parts as
follows:

Rindsa,x2d = L1sx2d + Z−2ẐsadL2sa,x2d, s32d

where

L1sx2d =E
0

1 z3dz

fz2 + x2fszdg2, L2sa,x2d

=E
0

1 z3dz

sz2 + a2dfz2 + x2fszdg2 , s33d

Ẑsad = a3FSZ −
1

16
D ]

] a
+

a

16

]2

] a2 −
a2

48

]3

] a3G . s34d

Here the differential operatorẐsad is as introduced in Refs.
f18,19g. The first term in Eq.s32d is responsible for the en-
ergy loss of pointlike nucleus with chargeZ. The second
term describes the energy loss of an individual bound elec-
tron and the vicinage energy loss due to an interference in-
teraction between pointlike nucleus and the bound electron
with its spherically symmetric spatial distribution. We note
that the functionsL1sx2d andL2sa ,x2d can be approximated
quite well by substituting forfszd the first two terms in a
series expansion in powers ofz2, i.e., for fszd.1−z2/3. It
then follows from Eq.s33d that

FIG. 1. The friction coefficientRindsa ,G ,x2d for the He+ ion
sZ=2d vs damping parameterG for various materials.rs=2.677
(solid lines), rs=2.069(dashed lines). The lines with circles are for
the proton(pointlike) projectile.
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L1sx2d =
1

2s1 − x2/3d2FlnS2

3
+

1

x2D −
1 − x2/3

1 + 2x2/3
G , s35d

L2sa,x2d =
1

2fa2s1 − x2/3d − x2g

3F a2

a2s1 − x2/3d − x2ln
a2s1 + 2x2/3d

x2s1 + a2d

−
1

1 + 2x2/3
G . s36d

Equation(35) was obtained by Lindhard and Winther[4].
For some further simplification of Eq.(36) we note that even
for a light ion like He+ and for a metallic target material,a
=px2Zù2. Thus the parametera can be very large for
heavy ions withZ@1. Therefore from Eqs.(32), (33), (35),
and (36), and using the equation

ẐsadS 1

alD = F 1

16
− Z +

sl + 1dsl + 5d
48

G l

al−2 s37d

for an arbitraryl, we finally find the following asymptotic
expressionsfor largead:

Rindsa,x2d . q1
2L1sx2d + DLsa,x2d, s38d

where

DLsa,x2d =
qq1

a2 DL1sx2d −
qs3 − 5qd

a4 DL2sx2d, s39d

DL1sx2d =
2

s1 − x2/3d2F1 + 5x2/3

1 + 2x2/3
−

2x2

1 − x2/3
lnS2

3
+

1

x2DG ,

s40d

DL2sx2d =
1

2s1 − x2/3d3F1 − 11x2/3 − 44x4/9

1 + 2x2/3

+
6x4

1 − x2/3
lnS2

3
+

1

x2DG . s41d

We have introduced the notationsq=1/Z andq1=1−q. Now
the coefficientsDL1sx2d and DL2sx2d depend only on the
target density. The accuracy of the derived asymptotic result
is illustrated in Fig. 2 both for protonsdotted lined and ex-
tended He+ ion ssolid and dashed linesd projectiles, where
the approximate expression forRindsa ,x2d is compared
with the result of a numerical integration of Eq.s31d. As
seen from Fig. 2 both exactssolid lined and approximate
sdashed lined data for Rind practically lie on the same
curve. Also Fig. 2 shows an enhancement of the friction
coefficient for extended ions. This is due to the effective
charge for extended ions remaining higher than the pro-
jectile total charge,Zt fsee Eqs.s22d and s31dg.

C. High-velocity limit: General formulation

Consider next the limit of large projectile velocities. In
this limit the general expression(6) for poinlike projectiles

with chargeZ moving in a DEG without dampingsg=0d
reduces to the simple Bethe-Bohr formula[4],

SBB =
8S0Z

2

3p2x2l2lnSÎ3

x
l2D =

Z2e2vp
2

y2 lnS2my2

"vp
D . s42d

In the presence of damping and for extended ions this for-
mula is shown to be significantly modified. We derive below
a generalized expression for SP, in a high-velocity limit, for
extended ions moving in a disorderedsg=0d DEG. Only ISP
in a high-velocity limit is considered. In order to show
how ISP in a high-velocity limit is affected we consider
the stopping number of an extended projectile,Lsa ,ld,
which relates to ISP as follows:

Sindsld =
8Z2S0

3p2x2l2Lsa,ld, s43d

Lsa,ld =
6

px2E
0

l du

u
Lsa,ud, s44d

where

Lsa,ud = u2E
0

`

Z2sa,zdIm
− 1

«sz,u,Gd
zdz

= L0sud + Z−2ẐsadL1sa,ud, s45d

L0sud = u2E
0

`

Im
− 1

«sz,u,Gd
zdz, s46d

L1sa,ud = u2E
0

`

Im
− 1

«sz,u,Gd
zdz

z2 + a2 . s47d

In Eq. (45) the first term is the SP of projectile pointlike
nucleus and the second term is responsible to the energy loss
by individual bound electron and the interference effect.

The expression(44) can be written in the equivalent form

FIG. 2. The friction coefficientRindsa ,x2d [Eq. (31)] of the He+

ion vs material densitysx2d. The solid and dashed lines correspond
to exact and approximate expressions(31), (35), and (38)–(41),
respectively. The dotted line corresponds to the proton projectile.
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Lsa,ld = L0 +
6

px2fL`ln l − lsa,ldg, s48d

whereL`=Lsa ,u→`d,

L0 =
6

px2HE
0

1 du

u
Lsa,ud +E

1

` du

u
fLsa,ud − L`gJ ,

s49d

lsa,ld =E
l

` du

u
fLsa,ud − L`g. s50d

The first two terms in Eq.s48d give the leading logarithmic
term in the case of an extended ion moving in a disordered
DEG. The second term inside the square brackets in Eq.s48d
gives a high-velocity correction to the main logarithmic con-
tribution. This requires an evaluation oflsa ,ld at l@1 and
hence we need to derive an asymptotic expression for
Lsa ,ud at largeu. The evaluation of the functionsL0sud and
Lsa ,ud is done in detail in Appendix A.

Using the parametersq andq1, the asymptotic expansion
for Lsa ,ud then finally reads(see Appendix A for more de-
tails)

Lsa,ud =
px2

3
HC0 +

C1

2u
+

C2

u2 +
3C3

2u3 +
2C4

u4 + ¯J ,

s51d

where

C0 =
1 + q1

2

2
, C1 =

Gq

a
S3 −

35

16
qD , s52d

C2 =
3s1 + q1

2d
10

+
2qq1

a2 Sx2

3
− G2D −

12q1
2G4

5x4 , s53d

C3 =
2Gq

3
H 9

10a
S3 −

35q

16
D −

3a

2
S1 −

5q

16
D

−
5s3G2 − 2x2d

6a3 S21q

16
− 1D −

4

3pa2F5q − 3

a2

+
7s16 − 33qd

24pa3 + 2q1GJ , s54d

C4 =
1 + q1

2

2
S 3

14
+

x2

3
D +

2q1
2G2

7
F27G2

5x4 S G4

5x4 − 3D +
14G4

x4 S1

+
24

25x2D −
119

12
G−

3G2qs2 − qd
2

+
qs5q − 3d

2a4 Sx4

9
+ G4

− G2x2D −
qa4

2
+

2qq1

a2 Fx2

5
+

33G2

20
−

12G4

5x4 Sx2

3
−

G2

2
D

+
G2

x2/3 − G2/4
S G4

5x2 +
211G2

240
−

49x2

60
−

3G6

10x4DG

−
G2q

16pa3F5s16 − 21qd +
7

a2s33q − 16dG . s55d

Note that asymptotic expansion(51) is valid for the val-
uesu.a. Also in order to arrive at Eqs.(51)–(55) we again
assumed thata.2 for a realistic medium and for extended
ions, and used the following approximate expressions:

Ẑsad
1

a5fSR
s0dsad − 1g

.
8

px2a2S2Zt −
3Zt − 2

a2 D , s56d

Ẑsad
1

a6fSR
s0dsad − 1g

.
20

px2a3SZt −
5

16
D . s57d

From Eqs.(51) and (52) we find that

L` =
px2

6
s1 + q1

2d. s58d

Now we can calculate the functionlsa ,ld at high-velocity
limit. From Eqs.(50), (51), and (58) we find for l.a (or
y.Zy0=Ze2/")

lsa,ld =
px2

6
SC1

l
+

C2

l2 +
C3

l3 +
C4

l4 + ¯D . s59d

Let us consider some particular cases for the expansion
coefficientsC0, C1, C2, C3, andC4. For a pointlike projectile
moving in a disordered DEG at the limitZ→` we find from
Eqs.(52)–(55)

C0 = 1, C1 = C3 = 0, C2 =
3

5
−

12G4

5x4 , s60d

C4 =
3

4
+

x2

3
+

2G2

7
F27G2

5x4 S G4

5x4 − 3D +
14G4

x4 S1 +
24

25x2D
−

119

12
G .

In another case when an extended ion moves in a
damping-free mediumsG=0d we obtain from Eqs.(52)–(55)

C0 =
1 + q1

2

2
, C1 = C3 = 0, C2 =

2qq1x2

3a2 +
3s1 + q1

2d
10

,

s61d

C4 =
1 + q1

2

2
S 3

14
+

x2

3
D +

2qq1x2

5a2 +
x4qs5q − 3d

18a4 −
qa4

2
.

For a pointlike projectile moving in a DEG without damp-
ing both Eqs.(60) and (61) lead to the known result(see,
e.g., Ref.[4])

C0 = 1, C1 = C3 = 0, C2 =
3

5
, C4 =

3

14
+

x2

3
. s62d

The calculation ofL0 merits a separate presentation and is
done in detail in Appendix B. From Eqs.(48), (58), (59), and
(B7), for stopping numberLsa ,ld we finally find
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Lsa,ld = q1
2lnFs2

Î3

xas1
e−Qshdl2+s1G −

C1

l
−

C2

l2 −
C3

l3 −
C4

l4

− ¯ , s63d

wheres1 ands2 are given by Eq.sB2d. The functionQshd is
given by Eq. sB2d and depends on damping parameterG
through relationh=GÎ3/2x ssee Appendix Bd and has been
obtained under the assumption thatg,2vp. When the
damping vanishessG→0d. this function Qshd→0. The
functionQshd increases with the damping parameterG and
at h=1, Qshd=1.

For a pointlike projectile(s1=0, s2=1) but for nonzero
damping from Eq.(63) we obtain

Lsa,ld = lnF 2my2

"v̄sGdG −
C2

l2 −
C4

l4 − ¯ , s64d

wherev̄sGd=vpe
Qshd. So, the leading logarithmic term in the

stopping number depends on the target conditions through
the electron density and the parameterG. The coefficientsC2
andC4 are defined as in Eq.s60d. Equations64d is the modi-
fied Bethe-Bohr SP formula with the excitation energy
"v̄sGd which now depends on the damping parameterG. It
increases monotonically with an increasing damping param-
eterG.

To make contact with an experimental situation in which a
carbon foil is used, we choose values of the parameters cor-
responding to the valence electrons in carbon. With four
electrons per atom the density and damping parameters are
rs=1.6 and"g=15 eV (or G=0.19), respectively. For this
values we find thatv̄sGd=1.52vp and the damping effect can
give an observable effect for projectile intermediate velocity
range.

Consider now an extended ion moving damping-free elec-
tron gassG=0d. From Eq.(63)

Lsa,ld = q1
2lnF2my2

"vp
s2S y

Zy0
Ds1G −

C2

l2 −
C4

l4 − ¯ ,

s65d

where the coefficientsC2 andC4 are given by Eq.s61d. Here
the parameterss1 ands2 depend only the projectile nuclear
chargeZ fsee Appendix B, Eq.sB2dg and hence from Eq.
s65d it is now seen that the leading logarithmic term depends
also on an extended ion property through the parameterZ.

For a pointlike projectile and from Eq.(65) in the limit
s1→0 and s2→1 we obtain the Bethe-Bohr logarithmic
stopping number lns2my2/"vpd [see Eq.(42)]. Therefore the
Bethe-Bohr SP asymptotic formula is significantly modified
both for extended ions and due to the presence of damping.
Now the logarithmic term depends ony2+s1 which may be
contrasted with the usual quadratic, i.e.,y2 dependence. For
light He+ sZ=2d, Li2+ sZ=3d, and Be3+ sZ=4d ions, for in-
stance, s1=3, s2.3, s1=1.25, s2.1.68, and s1=7/9
.0.77, s2.1.4, respectively. Then for the logarithmic SP
we find lnf0.375Usy /y0d5g, 4 lnf0.425Usy /y0d3.25g, and
9 lnf0.481Usy /y0d2.77g, respectively, where the functionU
=p2x3Î3e−Qshd depends on the target parametersx and

G.However, for heavy ions withZ@1 the dependence of the
logarithmic term in Eq.(63) on Z becomes less important
and the stopping number is similar to the Bethe-Bohr expres-
sion. Then an enhancement of the SP is caused due to the
usual quadratic dependence,Zt

2,Z2 in Eqs. (42) and (43).
Let us note, however, that for heavy ions the nonlinear cou-
pling between the projectile and the target may play an im-
portant role[6] and Eq.(63) then breaks down.

D. Asymptotic „N\`… SP of N-ion chain

It is of interest to consider the asymptoticsN→`d limit of
the SP of anN-ion chain.

From Eqs.(20) and(21) and using the mathematical rela-
tion

1

pN
UFsinsNxd

sinsxd G2U
N→`

= o
n=−`

`

dsx − pnd s66d

we find

Ksl,Rd = USN

N
U

N→`

= 16pZ2S0Sa0

R
D2

o
n=1

`

nE
0

1

Z2sa,zn/ud

3Im
− 1

«szn/u,lu,Gd
du

u
, s67d

where zn=pn/j sj=kFRd. Equation s67d shows that for a
high N-ion chain, with the ions not necessarily uniformly
distributed along the chain, SP is linearly proportional to the
numberN of ions: SN=Ksl ,RdN, whereKsl ,Rd depends on
the target densityg and the individual ion structure factor.
One can find close analytical expressions forSN in some
particular cases. Before presenting these results we note
some limiting values of the SP with respect toR. Recalling
the exact RPA expression for theN-ion chain SPfsee Eq.
s20dg we see thatR enters only in the chain structure factor,
i.e., the quantity in square brackets in Eq.s21d. In the usual
units zuj /l=vR/2y. Then the SP depends onR through the
combinationRN which is a measure of the size of the en-
semble of ions in the chain. Because of this combination it is
seen that in the exact and also in the asymptotic expressions
for the SP atN@1, R can be arbitrarily large but not arbi-
trarily small. This can be understood if the one-dimensional
chain ofN ions is viewed as a lattice and not as a continuum
of charges. An estimate of this minimum interionic separa-
tion lengthRmin can be made from the following physical
considerations. In a velocity limity,yF such that the lin-
ear response theory can still be validRmin may be esti-
mated from the argument of the sinus function in Eq.s21d,
which involves NvR/2y. For sN→`d, it is sufficient to
assume thatR.y /v implying a minimum lengthRmin
>y /v, where the frequencyv corresponds to either the
collective or single-particle excitations. For smaller ve-
locities y,yF not invalidating the linear response theory,
Rmin is of the order of the Thomas-Fermi screening length.

As we discussed in Sec. II B the per SP ion ofN-ion
chain,SN/N, becomes the individual SP of an ion for large
interionic distancesR. This result can be recovered from Eq.
(67) if the sum inR→` limit is replaced by an integral over
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the variable zn/u=pn/uj→z which gives againKsl ,R
→`d=Sindsld.

1. Low-velocity limit

In a low-velocity limit wheny!yF, the linear response
theory of SP is still valid provided the projectile ions are of a
low ionization level, e.g., for singly charged ions like H+,
He+, and Be+, etc. (For highly charged ions when the total
projectile charge in a chain is quite high, the linear response
theory may not be valid in a low-velocity limit.) In this limit
Eq. (67) can be replaced by

Ksl,Rd . 8p5x6Z2S0
y

y0
Sa0

R
D3

o
n=1

`

n2E
zn

` Z2sa,zdJsz,Gddz

fz2 + x2fszdg2

s68d

with the quantities introduced earlier. For a further analytical
manipulation of Eq.s68d let us consider the case of vanishing
damping but for an extended projectile. In this limit
Jsz,Gd=us1−zd fscf. Eq. s30dg, whereuszd is the Heaviside
unit-step function. It then follows from Eq.s68d that SN/N
=0 for 0ørø1 wherer=kFR/p. The last result indicates
that Eq. s68d is not valid for g=0 si.e., for a disorder-free
DEGd whenR is small such thatR,p /kF=Rmin. For r.1
and for g=0, Eq. s68d can be expressed as

Ksl,Rd = 8p5x2Z2S0
y

y0
Sa0

R
D3

o
n=1

n1

n2QSn

r
D . s69d

Heren1 stands forEfrg, whereEfrg denotes the integer part
of r, and

Qssd = x4E
s

1 Z2sa,zddz

fz2 + x2fszdg2 . s70d

The functionQssd can be approximated quite well by sub-
stituting for fszd the first two terms in a series expansion in
powers ofz2, i.e., for fszd.1−z2/3 (see Sec. III B). For
further simplification of Eqs.(69) and(70) we note that even
for a light ion like He+ and for a metallic target material,a
=px2Zù2. Thus the parametera can be very large for the
heavy ions withZ@1. It then follows from Eq.(70) that

Qssd > d2q1Sq1

2
−

2qd2

a2 DS 1

d2 + 1
−

s

d2 + s2D
+ dq1Sq1

2
+

2qd2

a2 DSarctan
1

d
− arctan

s

d
D , s71d

where d=x /Î1−x2/3. The numerical calculations show
that the relative difference of exactfEqs. s69d and s70dg
and approximatefEqs. s69d and s71dg expressions is less
than 1 % for metallic densities.

2. High-velocity limit

In the high velocity limit the simple plasmon-pole ap-
proximation(PPA) for the linear response function with the
plasmon dispersion is widely used(see, e.g., Refs.
[7,20,21]). Here we consider the high-velocity limit of the

N-ion chain SP for vanishing damping. Within PPA and for
g→0 using the variablesz andu we present the imaginary
part of 1/«sz,u,Gd in the following form [20]:

Im
− 1

«sz,u,Gd
=

px2

6uz
dSuz−Îx2

3
+

3

5
z2 + z4D . s72d

The argument of the Diracd function in Eq.s72d gives the
dispersion relation betweenv and k. In the usual units this
relation becomesvPPA

2 skd=vp
2+s3/5dk2yF

2 +"2k4/4m2.
Substitution of Eq.(72) into Eq.(67) gives the expression

(C1) (see Appendix C for details). For a further simplifica-
tion of Eq. (C1) we assume that(i)d=r /l=sÎ3/xd
3sR/lPd,1, wherelP=2py /vP is the plasmon wavelength
or R,lP (long-wavelength limit), (ii ) l@maxf1;1/r ;ag.
The second condition,l@1/r, gives for an ion with a given
velocity y, the valueRmin.plDB, wherelDB=" /my is the
de Broglie wavelength of a target electron. The third condi-
tion, l@a, is equivalent to the conditiony@Ze2/" of the
first Born approximation, which is valid here only for light
projectile ions. In this limit we findn1=1, n2>Eulru@1,
and Eq.(C1) yields (see Appendix C for details)

Ksl,Rd >
4Z2S0

3p2x2l2Hlnsg1lrd +
1

2l
S1

r
+

p2r

10
D +

1

l2Fr2zs3d

3Sx2

3
− 2qa4D −

3

5
−

1

12r2GJ . s73d

Here zszd is the Riemann zeta function withzs3d>1.202,
g1=eC=1.781, andC=0.5772 is theEuler’s constant.

IV. NUMERICAL RESULTS AND DISCUSSION

Using the theoretical results obtained in Secs. II and III,
we present here detailed numerical calculations of stopping
power and related quantities for a target material with the
density parameterrs=2.07 corresponding to the valence elec-
tron density in Al. The target material is modelled as an
electron gas whose linear response function, within RTA, is
given by Eqs.(9)–(14) with g as a model damping param-
eter. In Figs. 3–5 and 6(a) based on numerical calculations
we choose four values ofg :"g=0 (solid lines), "g=3 eV
(dashed lines), "g=10 eV (dash-dotted lines), and "g
=15 eV (dotted lines). The values 0,"g,3 eV are compa-
rable with the damping parameters(related inversely to the
collision times) in some metal targets, e.g., Al for which"g
can be,0.1 eV. The last value"g=15 eV corresponds to
the damping parameter in carbon[12–14].

As examples of ion beams we have considered three types
of projectiles:(i) individual He+ ion, (ii ) He+ ion dicluster,
and (iii ) N–He+ ion chain with the orientation angleq=0.
For case(ii ) we choose two values, 0 andp /2, for the di
-He+ ion cluster orientation angleq. Correlations between
two He+ ions in the dicluster are maximum and minimum,
respectively, for these two values ofq. For high-velocity
projectiles it is useful to introduce the wavelengthlp
=2py /vp which can be expressed by the density and veloc-
ity parametersrs andl, respectively,lP=3.683rs

1/2l (in Å).
The velocity parameter isl=0.52rsy /y0. For the valuers
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=2.07 one findslp=5.31l (in Å) andl=1.08y /y0.
For projectiles(i) and (ii ) we present theoretical results

for the stopping powerS/2, vicinage functiong, together
with the dependence ofS/2 andg on R, the interionic sepa-

ration distance within the cluster. As in our previous paper
[7], SP has been divided by a factor of 2. The reason, as
discussed in Sec. II A, is that the SP results for a di-He+ ion
cluster are expected to reduce asymptotically(asR tends to
infinity) to those for two uncorrelated ions, the latter being
referred to as individual SP ISP. The SP for the projectile(iii )
SN has been treated in the same way.

Figure 3 shows ISP while Fig. 4 shows di-He+ ion cluster
SP and vicinage function(VF) as a function ofy /yF and R
for the two above-mentioned values ofq. In a low-velocity
limit these figures show an enhancement of the SP with an
increasing damping parameterg. The numerical calculation
of the friction coefficient shows this result more clearly(see
Fig. 1). As discussed in Sec. I, this is due to the broadening
of the plasmon peak with increasingg which shifts the
threshold for the energy loss by plasmon excitation towards
lower projectile velocities. These results have been reported
previously[12]. However, in a high-velocity limit the damp-
ing decreases the energy loss rate(see Figs. 3 and 4) and this
is shown explicitly by the logarithmic term in Eq.(63). The
numerical calculations of the last expression for ISP in a
high-velocity limit show that the asymptotic curves coincide
with the exact ones[based on Eqs.(9)–(14)] beginning with
l,2. Hence it can be a good approximation for analyzing
the experimental data on beam-target interactions.

Consider now the angular dependence of SP. It is seen
from Figs. 4(a)–4(d) that in a medium velocity range
sy,4yFd, SP has a remarkably higher value for the larger
value ofq. This is likely due to single-particle excitations in
this velocity range. In the higher velocity range, the dicluster
wake field excitations become important and we find that the
situation is reverse in the higher velocity rangesy.4yFd for
which SP forq=0 is slightly larger than forq=p /2.

The interplay of correlations between the two ions and of
damping can be explored by the plots in Figs. 4(b) and 4(d).
Correlation effects are expected to be maximum when the
two ions are aligned with each other in the direction of
propagation of the dicluster motionsq=0d while they decay
whenq tends top /2, the latter behavior being related to the
wake field due to the leading ion. For a chosen value of the

FIG. 3. ISP of an individual He+ ion vs y /yF for rs=2.07. g
=0 (solid line), "g=3 eV (dashed line), "g=10 eV (dash-dotted
line), "g=15 eV (dotted line).

FIG. 4. S/2 andg of a di-helium cluster vsy /yF (left column)
andR (right column) with (a) and(b) R=3 Å andq=0; (c) and(d)
R=3 Å and q=p /2; (e) and (f) v=3vF and q=0; (g) and (h) v
=3vF and q=p /2. rs=2.07, g=0 (solid line), "g=3 eV (dashed
line), "g=10 eV (dash-dotted line), "g=15 eV (dotted line).

FIG. 5. SN/N of an N-helium linear chain withR=3 Å andN
=5 vsy /yF for rs=2.07.g=0 (solid line), "g=3 eV (dashed line),
"g=10 eV (dash-dotted line), "g=15 eV (dotted line).
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interionic distanceR, the vicinage function is negative at
y,4yF for an aligned dicluster but it is positive in all veloc-
ity ranges forq=p /2. In the first case the correlation effects
decrease the full SP and this is shown in Fig. 4(a) by the
formation of a short plateau on the SP curve near the value
l,2. As to the role of damping, it considerably softens the
correlation effects for both values ofq at y.yF.

We have so far plotted SP(divided by a factor 2) or VF vs
the beam velocityy /yF, for some fixed value of the interionic
distanceR=3 Å. We now look for some complementary in-
formation about SP, and plot SP as a function ofR with a
given value ofy=3yF. The objective is then to see how, for
the maximum and minimum angular configurations, SP and
VF depend onR and y /yF. Figures 4(e)–4(h) show SP and
VF for a di-He+ ion cluster, forq=0 and q=p /2. These
figures show an oscillatory character of SP and VF with re-
spect toR. The oscillations are the highest forq=0 and
lowest forq=p /2. It is seen from Figs. 4(e) and 4(f) that the

oscillation wavelength in the longitudinal direction is about
lp=5.31l.16 Å for g=0, while in the perpendicular direc-
tion [see Figs. 4(g) and 4(h)] the characteristic length scale
l'!lp and is not so sensitive to a variation of the damping
parameter"g, as shown in Ref.[19]. It is noteworthy that in
accordance to Ref.[19] the wavelengths of oscillationslp
=2py /vp at q=0 {see Figs. 4(e) and 4(f)] increase with"g
because the plasmon energy becomes smallerÂvp→"svp

2

−g2/4d1/2. But the amplitudes are now weaker due to the
collisional damping of plasmons. Let us note that the SP’s in
Figs. 4(e) and 4(g) tend asymptotically to the values of
Sindsld at l=3 andR→` while at smallR→0 the values of
S/2 becomeSindsld.

Having discussed SP’s for a di-He+ ion cluster, we now
present results for the projectile type(iii ), i.e., the quantity
SN/N for an N–He+ ion chain with the orientation angleq
=0. Figure 5 showsSN/N vs y /yF while Fig. 6 shows
SN/N vs ion numberN at fixed R and l [Fig. 6(a)], and at
fixed l and l [Figs. 6(b) and 6(c)]. Figure 5 may be com-
pared with Figs. 3 and 4(a). There are similarities but also
some interesting differences, the latter being due to a multi-
ion interference effect. We note that the interference effect
betweenN=5 ions decreases the strength of SP per particle
except in an extreme high-velocity limitlp@ sN−1dR, where
sN−1dR is the total length of theN-ion cluster chain. In this
limit the N-ion chain can be regarded as single entity and
hence SN/N,NSindsld@Sindsld [see, e.g., Eqs.(20) and
(21)].

Next we present Fig 6. For a more detailed presentation
we show the different plots in the same graph. It is clearly
seen from this figure the asymptotic regime of the SP when
the ion numberN becomes very large. The SP per particle is
saturated rapidly with increasingN. This regime has been
investigated analytically in Sec. III D[see Eq.(67)]. Here
again the collisional damping of the plasmons decreases the
values of SPS[Fig. 6(a)]. Figures 6(b) and 6(c) show the SP
in low- and high-velocity limits, respectively. The numerical
data presented in these figures are well described by the ana-
lytical results given by Eqs.(68)–(71) (low velocities) and
Eq. (73) (high velocities). As discussed in Sec. III D, the
curves saturated rapidly rather for large interionic distances
than for small one. It should be noted that the sawtooth pro-
file of SN/N vs N obtained within simple PPA(see Ref.[1])
is now replaced by the smooth curves in Fig. 6.

V. SUMMARY AND CONCLUDING REMARKS

In this paper we have presented a detailed theoretical
study of the stopping power of point ion, extended ion, ion-
cluster, as well asN-ion linear cluster projectiles in a degen-
erate electron gas containing disorder. In the course of this
study we have also derived some analytical results for the
disorder-inclusive RPA linear response function and for the
corresponding plasmon dispersion relations. These analytical
results go beyond those obtained in our previous paper[19].
After a general introduction to SP of a cluster of two and
NsNù3d extended ions, in Sec. II, theoretical calculations of
SP based on the linear response theory and using RTA are
discussed in Sec. III. A number of limiting and asymptotic

FIG. 6. SN/N of anN-helium linear chain vsN for rs=2.07 with
(a) R=3 Å and l=2, g=0 (solid line), "g=3 eV (dashed line),
"g=10 eV (dash-dotted line), "g=15 eV (dotted line); (b) l=0.2
and(c) l=2 with "g=5 eV, R=0.5 Å (solid line), R=2 Å (dashed
line), R=5 Å (dash-dotted line), R=10 Å (dotted line).

ENERGY LOSS OF IONS AND ION CLUSTERS IN A… PHYSICAL REVIEW E 69, 046404(2004)

046404-11



regimes of low and high-velocities, large ion numberN and
vanishing damping have been studied. These approximate
expressions are well supported by our numerical calcula-
tions. To our knowledge this is the most comprehensive
study of the SP-related physical quantities using RTA in the
linear response function. The theoretical expressions for a
number of physical quantities derived in this section lead to
a detailed presentation, in Sec. IV, of a collection of data
through figures on individual(i.e., single-ion) and correlated
stopping powers, vicinage function, of a single ion He+ ion,
di-He+ andN-He+ cluster projectiles for the target with den-
sity parameterrs=2.07 corresponding to the valence electron
density in Al. For the damping parameter, we have chosen a
wide range of values 0ø"lø15 eV; the damping param-
eters(which are inversely related to the collision times) for
some metal and semiconductor targets fall within this range.
The results we have presented demonstrate that with regard
to several physical quantities of primary interest the differ-
ence between RTA and usual RPA without damping is sub-
stantial while for others, specially for angular averaged quan-
tities, this difference may not be of practical significance.

It is of particular interest to study the high-velocity limit
for the SP of an ion beam. Such asymptotic expressions con-
tain some useful information on a projectile ion structure
factor and specially on the target medium properties. Equa-
tion (43) with Eq. (63) which are a generalization of the
Bethe-Bohr asymptotic formula[4] can be used for analyses
of experimental data on high-energy beam-target
interactions.1 We note that the analytical method developed
here for the derivation of high-velocity SP is general and
may be applied within a linear response treatment for other
types of extended multicharged projectiles as well as for any
particular form of the linear response function«sz,ud for the
target material. For given target material this approach re-
quires only the asymptotic form of the plasmon dispersion
relation at highu=v /kyF. In particular, for heavy energetic
ions our method has been previously applied using the
Brandt-Kitagawa variational statistical approximation for the
structure factor of projectile ion(see Ref.[8] for detail).

We shall make some brief remarks on the RTA in the
linear response function. In the literature on SP and related
problems, the disorder(collision)-inclusive linear response
function containing in the RTA, which is often referred to as
the Mermin dielectric function, has so far been considered
only in RPA. Going beyond RPA with electron-electron in-
teraction and disorder treated at the same microscopic level
is a difficult task. We may mention that recently the linear
response function has been considered in RTA which con-
serves the particle number, momentum and energy(see Refs.

[27,28] and references therein). The resulting dielectric func-
tion is somewhat involved and has not yet been much used.

In our calculations of SP and related quantities we have
modelled the disordered target medium as an electron gas
whose linear response function is constructed in RTA in or-
der to include scattering of electrons with disorder impuri-
ties. In our theory the phenomenological quantityg is the
inverse of the electron relaxation time. The numerical values
of g used in our calculations are within a physically expected
range for the specific target medium. In principleg can be
calculated to varying degrees of approximations. In the sim-
plest approximation, its inverse can be calculated through
Fermi’s golden rule for a model electron-impurity potential.
This may allow us to see how SP and related quantities de-
pend on the target properties through their influence ong.

We expect our theoretical findings to be useful in experi-
mental investigations of ion beam energy losses in solids.
One of the improvements of our model will be to include
some short-range correlation in the linear response function.
A study of this and other aspects will be reported elsewhere.
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APPENDIX A: EVALUATION OF FUNCTIONS L0„u…
AND L1„a ,u…

For a calculation of the functionsL0sud and L1sa ,ud at
u@1, it is convenient to introduce the following contour
integral:

I =E
C1

S1 −
1

«1sz,u,GdD zdz

z2 + a2u2 , sA1d

where we introduce the new variable according toz=zu and
«1sz ,u,Gd=«sz /u,u,Gd. The integration contourC1 is
shown in Fig. 7. This contour contains the realz axis s0,
+`d, the lower quarter circle, the imaginaryz axis s−i` ,0d
and an infinitesimal semicircleC2. In order to calculate the
integral I, we have to know the poles of 1/«1sz ,u,Gd, i.e.,
the zeroszrsud=uzrsud of «1sz ,u,Gd, for a fixed u. The so-
lution of the plasmon dispersion equation for a disordered
DEG has been investigated in detail in Ref.f19g. It has been

1After completing our work we became aware of a paper by
Kaneko [26] in which the high-velocity limit an extended ion SP
has been investigated using the Brandt-Kitagawa model of the ion
and within RPA but without disorder. The scope of our investigation
is larger than in Ref.[26]. Where our work makes some contact
with Ref. [26] we find that Kaneko’s results are consistent with ours
if we considerg=0 in our results. Kaneko’s work furnishes only the
modified Bethe-Bohr logarithmic term while our results in Eqs.(63)
and(65) contain also high-velocity corrections to the basic logarith-
mic SP.

FIG. 7. Illustration of contourC1 in the complexz plane. Iso-
lated pointP below the realz axis indicates the plasmon pole.
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shown thatzrsud lies in the lower quarter of the complexz
plane as shown in Fig. 7 with an isolated pointP below the
real z axis.

For large values ofuzu, the dielectric function must behave
as «sz,u,Gd→1+x2/3z4 according to Ref.[19]. Therefore
the integralI vanishes within the lower quadrants, and from
Eqs.(47) and(A1) we find by evaluating the residues at the
poles

L1sa,ud = 2pReF zrsud
] «1szrsud,u,Gd/] z

u2

zr
2sud + u2a2G −

pu2

2
F1

−
1

Ssa,udG , sA2d

whereU=u−G /a,

Ssa,u,d = «s− ia,u,Gd = 1 +
sau − GdfSRsa,u,Gd − 1g

au − GQsa,u,Gd
,

sA3d

Qsa,u,Gd =
SRsa,u,Gd − 1

SR
0sad − 1

, sA4d

SRsa,u,Gd = 1 +
x2

2a2HU2 − a2 − 1

2a
Sarctan

a

U + 1

− arctan
a

U − 1
D +

U

2
ln

sU + 1d2 + a2

sU − 1d2 + a2 − 1J ,

sA5d

SR
0sad = 1 −

x2

2a2H1 + a2

a
arctana + 1J . sA6d

It should be noted that Eqs.sA3d–sA6d follow directly from
our analytical results, Eqs.s9d–s14d, obtained for the dielec-
tric function of a disordered DEG. EquationsA2d provides
an explicit expression for the functionL1sa ,ud. It is now
easy to evaluate the functionL0sud directly from Eq.sA2d.
We then obtain

L0sud = 2pReF zrsud
] «1szrsud,u,Gd/] z

G . sA7d

For a calculation of asymptotic values of the functions in
Eqs.(A2) and(A7) we must know the asymptotic expansion
for largeu of zrsud and also for«1szrsud ,u,Gd. The expres-
sions for these functions have been found in Ref.[19]. We
recall that

zrsud = z0 +
z̃2

u2 +
z̃4

u4 + ¯ , sA8d

where the coefficientsz0, z̃2, andz̃4 are independent onu and
are found from Ref.f19g. Finally, using the analytical results
obtained in Ref.f19g we arrive at Eq.s51d.

APPENDIX B: EVALUATION OF L0 FOR EXTENDED ION
In this appendix we give detail derivation of the param-

eterL0 which contributes to the leading logarithmic term of
high-velocity SP. First we write Eq.(49) in another but
equivalent form,

L0 =E
zmin

zmax

Z2sz,ad
dz

z
− q1

2s2 + s1dln zmax+ q1
2sI1 − I2d,

sB1d

where we introduce the cutoff parameterszmax→` and
zmin→0,

s1 =
1

q1
2 − 1,lns2 =

q

q1
2S1 −

11q

12
D , sB2d

I1 =
6

px2q1
2E

0

zmax

uduE
0

zmin

Z2sa,zdIm
− 1

«sz,u,Gd
zdz,

sB3d

I2 =
6

px2q1
2E

zmax

`

uduE
zmin

zmax

Z2sa,zdIm
− 1

«sz,u,Gd
zdz.

sB4d

For derivation of Eq.(B1) the Bethe sum rule in variables
z andu has been used,

E
0

`

Im
− 1

«sz,u,Gd
udu=

px2

6z2 . sB5d

From Eq.(B1) at zmax→` andzmin→0 we find

E
zmin

zmax

Z2sz,ad
dz

z
= ln

zmax

zmin
+ Z−2ẐsadE

zmin

zmax dz

zsz2 + a2d
=ln

zmax

zmin

+ Z−2ẐsadF 1

a2Sln
zmax

zmin
−

1

2
ln

zmax
2 + a2

zmin
2 + a2DG

=q1
2ln

zmaxs2

zmin
+ q1

2s1ln
zmax

a
. sB6d

Substituting this result into Eq.(B1) we obtain

L0 = q1
2lnS s2

as1

e−Qshd

zminzmax
D , sB7d

where Qshd= I2shd− I1shd. Here as in Ref.f4g we assume
that zmax=s and zmin=zrssd, where zrssd is the solution of
dispersion equation for plasmons without damping ands
is some free and large parameter. It is knownssee, e.g.,
Refs. f4,19gd that at s→`, zrssd→x /sÎ3→0. Therefore
zmaxzmin→x /Î3at larges. Now we calculate the functions
I1 and I2. After some transformation from Eqs.sB3d and
sB4d at s→` we find

I1shd =
4h

p
E

0

1 dz

z
E

0

z u2du

u4 − 2s1 − 2h2du2 + 1
, sB8d
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I2shd =
4h

p
E

1

` dz

z
E

z

` u2du

u4 − 2s1 − 2h2du2 + 1
, sB9d

where h=GÎ3/2x. The integrals over variableu can be
calculated as follows:

E
0

z u2du

u4 − 2s1 − 2h2du2 + 1
=

1

4hÎ1 − h2
ImFt ln

t − z

t + z
G ,

sB10d

E
z

` u2du

u4 − 2s1 − 2h2du2 + 1
= −

1

4hÎ1 − h2
ImFt ln

z− t

z+ t
G ,

sB11d

wheret=Î1−h2+ ih. The last expressions have been ob-
tained under assumption thath,1 sor g,2vpd as it takes
place for real disordered media.

Then after final integration over variablez we finally find

Qshd =
h

Î1 − h2
arcsinÎ1 − h2. sB12d

From Eq. (B12) it follows that the functionQshd in-
creases with increasing of damping parameterG and at the
valueh=1sg=2vpd, Qshd=1.

APPENDIX C: DERIVATION OF EQ. (73)
Substituting Eq.(72) into Eq. (67) we find the following

expression for the coefficientK:

Ksl,Rd =
4Z2S0

3p2x2l2 o
n=n1

n2 nkn

n2 − x2d2/3
, sC1d

where

kn = S1 +
3

10Wn
DF1 −

qa4xn
2

sa2xn + 1d2G2

, sC2d

xn=1/sWn−3/10d, Wn=Î9/100+l2zn
2−x2/3, and d=r /l.

In Eq. sC1d n1=1+Efxr /nsldÎ3g, n2=Efnsldrgùn1 with

n2sld =
1

2
Fl2 −

3

5
+ÎSl2 −

3

5
D2

−
4x2

3
G . sC3d

The expression forKsl ,Rd given by Eq.(C1) is valid for
l.lmin (whenl,lmin this expression vanishes), where

lmin
2 =

3

5
+

B2srd + 4x2/3

2Bsrd
, sC4d

and

Bsrd =
2x

Î3
+

1

r2S1 +Î1 +
4xr2

Î3
D . sC5d

Note that from the conditionl.lmin one can estimate,
for a given and fixed ion velocity, the minimum distanceRmin
between ions discussed in Sec. III D.

An evaluation of the sum in Eq.(C1) is facilitated if we
write it in an equivalent form,

Ksl,Rd =
4Z2S0

3p2x2l2fC + ln n2 + G1sa,ld + G2sa,ldg,

sC6d

where

G1sa,ld = o
n=n1

n2 1

n
− lnn2 − C, sC7d

G2sa,ld = o
n=n1

n2 1

n
S n2kn

n2 − x2d2/3
− 1D . sC8d

In the limit l@1 we can have, to the leading order,xn
>1/lzn, n1=1, n2>lr@1. Therefore, using the asymptotic
result for the sumG1sa ,ld [29], we obtain

G1sa,ld =
1

2n2
−

1

12n2
2 + Osn2

−3d =
1

2lr
−

1

12l2r2

+ OS 1

l3r3D . sC9d

In a high-velocity limitG2sa ,ld is approximated as

G2sa,ld >
3r

10l
o
n=1

n2 1

n2 −
r2

l2S2qa4 −
x2

3
Do

n=1

n2 1

n3 .

sC10d

Both the sums in Eq.(C10) can be expressed in terms of
the dilogarithm function[29]. In a high-velocity limit when
n2>lr@1, using the asymptotic expressions for this func-
tion we find that the first and second sums are equal to
p2/6−1/lr andzs3d, respectively. Hence

G2sa,ld >
p2r

20l
−

1

l2F 3

10
+ r2zs3dS2qa4 −

x2

3
DG .

sC11d

Taking into account that lnn2> lnslrd−3/10l2, we finally
arrive at Eq.(73).
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